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Chondroitin sulfate (CS) is a class of sulfated glycosaminoglycan (GAG) chains that consist of repeating
disaccharide unit composed of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc). CS chains are
found throughout the pericellular and extracellular spaces and contribute to the formation of functional
microenvironments for numerous biological events. However, their structure-function relations remain
to be fully characterized. Here, a fucosylated CS (FCS) was isolated from the body wall of the sea cu-
cumber Apostichopus japonicus. Its promotional effects on neurite outgrowth were assessed by using
isolated polysaccharides and the chemically synthesized FCS trisaccharide B-D-GalNAc(4,6-0-disulfate)
(1—4)[a-1-fucose (2,4-O-disulfate) (1—3)]-B-D-GlcA. FCS polysaccharides contained the E-type disac-
charide unit GlcA-GalNAc(4,6-0O-disulfate) as a CS major backbone structure and carried distinct sulfated
fucose branches. Despite their relatively lower abundance of E unit, FCS polysaccharides exhibited
neurite outgrowth-promoting activity comparable to squid cartilage-derived CS-E polysaccharides,
which are characterized by their predominant E units, suggesting potential roles of the fucose branch in
neurite outgrowth. Indeed, the chemically synthesized FCS trisaccharide was as effective as CS-E tetra-
saccharide in stimulating neurite elongation in vitro. In conclusion, FCS trisaccharide units with 2,4-O-
disulfated fucose branches may provide new insights into understanding the structure-function relations
of CS chains.
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1. Introduction

Chondroitin sulfate (CS), a class of sulfated glycosaminoglycans
(GAGs), is ubiquitously distributed in the peri/extracellular
matrices in the form of CS proteoglycans (PGs), in which one or
more CS polysaccharide chains are covalently linked to one of a
panel of core proteins. CSPGs fine-tune the local microenviron-
mental niche to support a variety of cellular events, including cell-
cell and cell-matrix interactions, cell proliferation, morphogenesis,

Abbreviations: BDNF, brain-derived growth factor; CNS, central nervous system;
CS, chondroitin sulfate; FCS, fucosylated CS; GAG, glycosaminoglycan; GlcA, glu-
curonic acid; GalNAc, N-acetylgalactosamine; PLO, poly-t-ornithine; PG,
proteoglycan.
* Corresponding author.
E-mail address: kitagawa@kobepharma-u.ac.jp (H. Kitagawa).
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and neurite outgrowth [1—4]. The functional divergence of CSPGs is
well known to be associated with the structural characteristics of
CS moieties [1—14]. Although CS has a simple, linear polysaccharide
backbone that consists of repetitive disaccharide units of glucur-
onic acid (GIcA) and N-acetylgalactosamine (GalNAc), structural
variations can be generated via several types of enzymatic modi-
fications, including sulfation [1,3,15,16]. Therefore, glycobiological
approaches focusing on the structure-function relationships of CS
moieties are essential to understand the multifunctionality of
CSPGs.

Unlike in vertebrates, CS chains derived from marine in-
vertebrates, including ascidians, sea cucumbers, and sea urchins,
show unique structural features [17,18]. In particular, sea cucum-
bers contain distinct CS analogs, fucosylated CS (FCS) chains, in
their body wall. The central core of FCS is composed of a conven-
tional CS disaccharide unit, as found in vertebrates, but also has
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branches of sulfated a-fucose residues that are linked to the 3-O-
positions of GlcA residues embedded in the CS backbone [19—21].
FCS reportedly has wide-ranging biological activities, such as anti-
coagulant [22,23], anti-thrombotic [23,24], anti-virus [25], and
anti-cancer [26] effects. Since the anti-coagulant/anti-thrombotic
activities of FCS disappear after removal of the sulfated fucose
branches by mild acid hydrolysis [22,23], at a minimum these two
actions of FCS are apparently dependent mainly on the degree of
sulfation and the position of sulfate in the fucose branches, and/or
on the distribution of branches along the CS backbone. In contrast,
in addition to the fucose branches, the backbone structure of FCS
may also affect the other biological functions of FCS.

Notably, FCS polysaccharides derived from several species of sea
cucumber contain CS backbones with non-negligible amounts of
the disulfated disaccharide E unit [GlcA-GalNAc(4,6-O-disulfate)]
[21,27—29]. Among typical CS subtypes, CS-E polysaccharides, a
representative oversulfated CS subtype with predominant E units,
are well known to exhibit strong neurite outgrowth-promoting
activity toward primary hippocampal neurons in vitro
[2,3,7,30,31]. Typical CS chains found in mammalian tissues are
generally considered as major axon growth inhibitory molecules in
the injured adult central nervous system (CNS); consequently, the
apparently paradoxical ability of CS-E is of special interest for
therapeutic applications for nerve regeneration after adult CNS
injury. FCS may therefore be an ideal CS analog for determining the
relationship between the structures of CS-related polysaccharides
and their biological effects, especially on promoting neurite
outgrowth. In the present study, we isolated FCS from the body wall
of the sea cucumber Apostichopus japonicus. This FCS has a high
content of E unit in the polysaccharide backbone and bears char-
acteristic fucose branches. Comparative analyses of CS-E and FCS
polymers, and their respective (chemically synthesized) minimal
functional oligosaccharide units, demonstrated the functional
equivalence of the E-type CS disaccharide unit and a 2,4-O-dis-
ulfated fucose branch found in A. japonicus FCS preparation in
promoting neurite outgrowth of primary hippocampal neurons.
Our findings provide additional insights into understanding the
basis for CS-E-mediated neurite outgrowth.

2. Materials and methods
2.1. Materials

The sugars CS-C from shark cartilage, CS-E from squid cartilage,
standard unsaturated CS disaccharides, and the enzyme Proteus
vulgaris chondroitinase ABC (EC 4.2.2.4) were purchased from
Seikagaku Corp. (Tokyo, Japan). The CS-C disaccharide GalNAc(6-0-
sulfate)-GlcA-O-p-methoxyphenyl (CS-C-di) [32], two CS-E oligo-
saccharides [32] [(GalNAc(4,6-O-disulfate)-GIcA-O-p-methox-
yphenyl) (corresponding to the E disaccharide unit, CS-E-di) and
GalNAc(4,6-0-disulfate)-GlcA-GalNAc(4,6-0-disulfate )-GlcA-O-p-
methoxyphenyl (CS-E tetrasaccharide, CS-E-tetra)], and the FCS
trisaccharide (FCS-tri) B-D-GalNAc (4,6-O-disulfate) (1—4)[a-L-Fuc
(2,4-0-disulfate) (1—3)]-B-D-GIcA-O-p-methoxyphenyl [33], were
previously chemically synthesized.

2.2. Extraction and purification of FCS from the sea cucumber
A. japonicus

A suspension of freeze-dried body wall of sea cucumber
(20.56 g) was treated in 160 ml of boiling water for 10 min, followed
by the addition of 0.5 M borate buffer (200 ml), pH 7.0. The sus-
pension was then incubated with protease N Amano G (1.46 g x3
every 3 days) at 55 °C for 9 days total. The incubated suspension
was boiled for 15 min and filtered through Celite. The filtrate was

subjected to ultrafiltration using a Pellicon Biomax PXB0O08A50
module (Merck Millipore, Darmstadt, Germany), and subsequent
precipitation with 80% ethanol containing 1.25% NaOAc afforded
crude glycans, which were collected by centrifugation at 0 °C and
dried in vacuo. One portion of crude glycans (3.02 g) was diluted
with a small amount of 0.15 M LiCl/0.05 M acetic acid, pH 4.0 and
applied to a column ($4.4 x 35 cm) of DEAE-cellulose. The column
was washed stepwise with 750 ml of buffer (per step) containing
0.15, 0.5, 1.0, and 2.0 M LiCl. The 2.0 M LiCl fractions containing
glycans were subjected to ultrafiltration as above, gel permeation
(LH-20, H0, $4.6 x 34 cm), and ultrafiltration. The solution was
freeze-dried to give FCS (1.18 g).

2.3. Mild acid hydrolysis of FCS

FCS (23.2 mg) in 1 M formic acid was kept at 80 °C for 15 h.
Volatiles were removed under reduced pressure and the residue
was subjected to gel permeation column chromatography (LH-20,
1% AcOH, ¢1.3 x 86 cm) to give de-fucosylated polysaccharide
(4.4 mg).

2.4. Disaccharide composition of FCS

The CS polysaccharide fraction released by mild acid hydrolysis
of the purified FCS fraction was digested with chondroitinase ABC
at 37 °C for 2 h. The digests were derivatized with fluorophore 2-
aminobenzamide (2-AB) and then analyzed by anion-exchange
HPLC using an amino-bound silica PA-03 column (YMC, Kyoto,
Japan) [34]. The resultant disaccharides were identified and quan-
tified by comparison with authentic unsaturated CS disaccharides.

2.5. In vitro neurite outgrowth promotion assay

Primary cultures of hippocampal neurons were prepared as
described previously [7] with some modifications. Briefly, 8-well
chamber slides were precoated with poly-i-ornithine (PLO)
(Sigma), 1.5 pg/ml) and then overlaid with individual CS polymers
or CS oligosaccharides at the concentrations indicated in the
respective figure legends. Pregnant wild-type (C57BL/6) mice were
euthanized at 16 days postcoitum and the fetuses were quickly
dissected. Hippocampal tissue blocks collected from the embryos
were dissociated with 0.25% trypsin and 0.05% DNase. The single
hippocampal cells were resuspended with Neurobasal™ medium
(Thermo Fisher Scientific) containing B27 supplement (1 x ;
Thermo Fisher), 5 mM GlutaMAX™ [ (Thermo Fisher), 0.1% oval-
bumin, and penicillin-streptomycin (1 x ), plated at a cell density of
10,000-12,000 cells/cm? in each well precoated with a defined CS
substrate, and then maintained for 24 h at 37 °C in the presence of
5% CO,. Endogenous influences were neutralized by adding an anti-
brain-derived neurotrophic factor (BDNF) antibody (1 pg/ml, Santa
Cruz Biotechnology) or an isotype-matched control immunoglob-
ulin (IgG) 2 h after plating [35].

The cultured cells were fixed in 4% paraformaldehyde, per-
meabilized with 0.2% Triton X-100 in PBS containing 3% bovine
serum albumin (BSA), then immunostained with Cy3-conjugated,
anti-B-tubulin antibody (Sigma Aldrich, 1:2000) in PBS containing
3% BSA followed by nuclear counterstaining with Hoechst 33342.
For morphometric analysis, clearly isolated neurons with at least
one neurite longer than the cell body diameter were chosen at
random. For each test condition, the length of the longest neurite of
at least 50 neurons was measured using morphological analysis
software (FLVFS-LS, Flovel, Japan).

All animal procedures were approved by the Kobe Pharmaceu-
tical University Committee on Animal Research and Ethics. All ex-
periments were conducted in accordance with the institutional
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ethical guidelines for animal experiments.

2.6. Statistical analysis

All values are shown as mean + standard error of the mean
(S.E.M.). The data were evaluated using one-way analysis of vari-
ance (ANOVA) using the SPSS statistics program (IBM). P-values
<0.05 were considered statistically significant.

3. Results and discussion

3.1. Structural features of FCS preparations isolated from the sea
cucumber A. japonicus

The structural uniqueness of the fucose branches of FCS prep-
arations isolated from sea cucumber has led to significant effort to
characterize these branches, whereas their CS backbone architec-
tures have received relatively less attention. We independently
isolated an FCS preparation from the body wall of the representa-
tive Japanese sea cucumber A. japonicus, and this FCS was previ-
ously described as “fucose-branched CS-E” [21,36]. Consistent with
prior research, the intact FCS preparation was resistant to enzy-
matic digestion with a bacterial CS-degrading enzyme, chon-
droitinase ABC (ChABC) (data not shown), likely due primarily to
the presence of fucose branches linked to the 3-O-position of GIcA
residues [19,20]. Indeed, when subjected to mild acid hydrolysis to
release the fucose branches, the FCS preparation became suscep-
tible to eliminative cleavage by ChABC. To determine the precise
disaccharide composition of the CS backbone, the resultant CS di-
saccharides were derivatized with fluorophore 2-aminobenzamide
(2-AB) and analyzed by high-performance liquid chromatography
(Table 1). Of note, the major disaccharide unit in the FCS prepara-
tion was disulfated E unit [GlcA-GalNAc(4,6-0-disulfate)] (48%),
with small proportions of other units, including the monosulfated
units C [GlcA-GalNAc(6-O-sulfate)] (28%) and A [GlcA-GalNAc(4-0O-
sulfate)] (12%), and the non-sulfated unit O [GlcA-GalNAc] (12%).
Although the proportion of E unit in the FCS preparation was
approximately 20% less than that of a conventional CS-E prepara-
tion derived from squid cartilage (68%) (Table 1), the proportion of
E unit was nonetheless considerable, allowing us to use our FCS
preparation as “fucose-branched CS-E” to investigate its involve-
ment in CS-E-mediated biological events.

3.2. Effect of the FCS preparation on neurite outgrowth in vitro

Highly sulfated CS preparations containing CS-E are well known
to promote neurite outgrowth of primary hippocampal neurons
[2,3,7,30,31]. To clarify whether the FCS preparation also exhibits
such ability, we used a previously established method to assess CS-
mediated neurite outgrowth [2,3,7,30,31]. Mouse embryonic day
(E) 16 hippocampal neurons were cultured at low cell density on
defined substrata precoated with poly-L-ornithine (PLO) and

Table 1
Disaccharide composition of the CS backbone of A. japonicus FCS preparation.

subsequently with CS polysaccharides (CS-C, CS-E, or FCS), because
PLO enhances not only neuronal cell adhesion, but also coating
with negatively charged CS. After 24 h incubation with each sub-
strate, the neurons were fixed and visualized by immunofluores-
cence staining (Fig. 1A). CS-C, a shark cartilage-derived CS
preparation rich in C unit (Table 1), was used as a control CS
polymer because C unit is the second most predominant unit in the
FCS preparation. Consistent with previous observations [2,3,7], CS-
C was a poorly permissive substrate for neurite outgrowth. In
contrast, most neurons cultured on substratra precoated with CS-E
or FCS tended to have a single prominent long neurite (Fig. 1A).
Thus, the length of the longest neurite of randomly selected neu-
rons was measured for quantitative evaluation of neurite
outgrowth promotion by each CS preparation (Fig. 1B). The neurite
outgrowth-promoting activity of the FCS preparation was signifi-
cantly higher than that of the PLO control and comparable to that of
CS-E, despite the lower proportion of E unit in FCS. This suggested
that fucose branches in the FCS preparation have a complementary
role in “CS-E backbone”-mediated neurite outgrowth promotion.

3.3. Validation of the neurite outgrowth-promoting potential of FCS
oligosaccharide

Studies with chemically synthesized CS oligosaccharides indi-
cate that the CS-E tetrasaccharide comprising a tandem-repeat
sequence of E units is the minimal structural determinant for CS-
E-dependent neurite outgrowth [35,37]. Therefore, given that
fucose branches in FCS preparation are functionally involved in CS-
E backbone-dependent neurite outgrowth, an FCS trisaccharide
unit comprising a single E unit with a (sulfated) fucose branch was
also expected to stimulate neurite outgrowth. The most direct
approach to test this hypothesis is to use structurally defined
chemical compounds corresponding to this putative functional unit
of FCS and assess their biological activities. The branched fucose
residues in sea cucumber-derived FCS polysaccharides can be
sulfated at the 2-O-, 3-0O-, and/or 4-O-positions [22]. Indeed, the
2,4-O-disulfated fucose residue is the predominant branched
structure in A. japonicus FCS preparations [29]. The chemical syn-
thesis of a representative FCS trisaccharide unit (FCS-tri), B-D-
GalNAc (4,6-O-disulfate) (1—4)|a-L-Fuc (2,4-O-disulfate) (1-3)]-B-
D-GIcA, has been achieved previously [33]. We therefore examined
the ability of FCS-tri to modulate neurite outgrowth. Intriguingly,
FCS-tri-precoated substrate enhanced neurite outgrowth in a
concentration-dependent fashion, with maximum outgrowth
observed by coating with 15 pg/ml FCS-tri (Fig. 2A). An undesirable
inhibitory effect was observed with our culture conditions when
higher concentrations (above 20 pg/ml) of FCS-tri were used, likely
due to the anti-adhesive nature of highly charged compounds. The
following assays using CS oligosaccharides were therefore con-
ducted with substrata precoated with 15 pg/ml of the corre-
sponding chemical compounds.

To further evaluate the structural importance of FCS-tri on

Composition A. japonicus FCS Shark cartilage CS-C* Squid cartilage CS-E*
mol%

GlcA-GalNAc 12 0.8 6.2

GlcA-GalNAc(6-0O-sulfate) 28 78 8.2

GlcA-GalNAc(4-0O-sulfate) 12 13 17

GIcA (2-0-sulfate)-GalNAc(6-0-sulfate) NDP 8.0 ND

GlcA-GalNAc(4,6-0-disulfate) 48 0.5 68

@ Disaccharide compositions of commercial CS preparations are described in Ref. [7].

> ND, not detected.
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Fig. 1. A. japonicus FCS preparation exhibits neurite outgrowth-promoting activity in vitro. (A) E16 hippocampal cells (10,000 cells/cm?) were grown for 24 h on various substrata
precoated with PLO, then subsequently coated with the CS polysaccharides (5 pg/ml) CS-C or CS-E, or with A. japonicus FCS preparation. The neurons were fixed and visualized with
anti-B-tubulin antibody (red) and Hoechst 33342 (blue). Scale bar, 100 um. (B) Mean length of the longest neurite of each of >50 randomly selected neurons for each condition was
measured (n = 3; *, p < 0.01; n. s. not significant; versus PLO-control). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 2. Neurite outgrowth-promoting abilities of chemically synthesized CS oligosaccharides containing FCS trisaccharide (FCS-tri). (A) Neurite outgrowth-promotion assay was
conducted using culture substrates precoated with PLO (0 pg/ml) and subsequently with different doses (2.5, 5.0, 7.5, 15, or 20 pg/ml) of FCS-tri (n = 3). (B,C) E16 hippocampal cells
(10,000 cells/cm?) were cultured for 24 h on the PLO surface, or on substrata further coated with one of the following CS oligosaccharides (15 pg/ml): CS-C disaccharide (CS-C-di),
CS-E disaccharide (CS-E-di), CS-E tetrasaccharide (CS-E-tetra), or FCS-tri. The subsequent assay was conducted as described in the legend to Fig. 1. Scale bar in (B), 100 pm. (C) Mean
length of the longest neurite per neuron cultured under each condition (n = 3; * p < 0.01; n. s., not significant; versus PLO).

neurite outgrowth, the promotional potentials of three additional GlcA], and CS-E tetrasaccharide (CS-E-tetra) [GalNAc(4,6-O-disul-
CS oligosaccharides, CS-C disaccharide (CS-C-di) [GalNAc(6-0-sul- fate)-GlcA-GalNAc(4,6-O-disulfate)-GlcA], all of which were
fate)-GIcA], CS-E disaccharide (CS-E-di) [GalNAc(4,6-0-disulfate)- chemically synthesized [32], were assessed and compared with
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that of FCS-tri (Fig. 2B and C). As expected, CS-E-tetra significantly
enhanced neurite outgrowth compared with the PLO control,
further indicating that a tetrasaccharide structure is essential for
CS-E-mediated neurite outgrowth. More importantly, the promo-
tional level exhibited by CS-E-tetra was comparable to that of FCS-
tri, whereas neither CS-C-di nor CS-E-di had a significant effect on
neurite extension. These findings suggested that sulfated fucose
branches are critical components for FCS-mediated neurite
outgrowth. These results also implied that sulfated fucose residues
may compensate for the relatively low occurrence of the minimal
functional unit, i.e., the CS-E tetrasaccharide sequence in the FCS
backbone, by coupling with a single E unit to form the characteristic
FCS trisaccharide unit.

3.4. Involvement of the BDNF signaling pathway in FCS-mediated
neurite outgrowth

Since CS-E binds to several humoral factors, including brain-
derived growth factor (BDNF), CS-E-mediated neurite outgrowth
must be exerted through activation of BDNF signaling inputs to
primary neurons [35,38]. In this aspect, CS-E can act as a coreceptor
and/or reservoir for neuritogenic factors [3,4]. We examined
whether neurite outgrowth stimulated by FCS oligo/poly-
saccharides is functionally linked to their structural backbone, i.e.,
CS-E, by assessing the respective neurite outgrowth abilities of CS-E
and FCS oligo/polysaccharides in the presence of a neutralizing
antibody against BDNF. An isotype-matched control IgG showed no
significant inhibition toward all substrata, whereas application of
the anti-BDNF antibody significantly suppressed the neurite
outgrowth-promoting effects of the CS-E and FCS oligo/poly-
saccharides (Fig. 3A and B). These findings indicate that neurite
outgrowth on substrata precoated with FCS oligo/polysaccharides
is also likely mediated via positive regulation of the BDNF signaling
pathway. Therefore, FCS-mediated neurite outgrowth may be
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fundamentally CS-E backbone-dependent, supporting the afore-
mentioned compensatory role of fucose branches in FCS
preparation.

In summary, we attempted to identify the functional domain
structure required for the neurite outgrowth-promoting potential
of A. japonicus FCS preparation. FCS preparation can be considered
as a fucosylated CS-E due to the high content of E unit in the CS
backbone. Using chemically synthesized CS compounds, we found
that the 2,4-O-disulfated fucose branch is a critical component of
the minimal determinant for FCS-mediated neurite extension.
Furthermore, an FCS trisaccharide (a disulfated fucose-branched E
unit) is functionally comparable to a neuritogenic CS-E tetra-
saccharide. Interestingly, although FCS polysaccharides with 2,4-0-
disulfated fucose branches reportedly possess anti-coagulant/anti-
thrombotic activities [27,28], the corresponding FCS trisaccharide
used in the present study exhibited no such activity (unpublished
observation). Therefore, such a characteristic FCS trisaccharide unit
can be a lead compound for developing CS-based regenerative
drugs for therapeutic intervention for adult CNS injury, with
potentially fewer side effects than current treatments. Our results
also demonstrated the potential utility of FCS as a benchmark CS
analog for deciphering the functional domain structures required
for their respective CS-dependent biological activities. Therefore,
comprehensive analyses of structure-function correlations of CS
chains using additional CS- and/or FCS-derived chemical com-
pounds are needed to better understand the molecular mecha-
nisms underlying CS-mediated biological functions, including
neuroregulatory roles.
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(n = 5; * p < 0.01; n. s., not significant; versus ctrl).
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